Automatic phonetic segmentation using boundary models
نویسندگان
چکیده
This study attempts to improve automatic phonetic segmentation within the HMM framework. Experiments were conducted to investigate the use of phone boundary models, the use of precise phonetic segmentation for training HMMs, and the difference between context-dependent and contextindependent phone models in terms of forced alignment performance. Results show that the combination of special one-state phone boundary models and monophone HMMs can significantly improve forced alignment accuracy. HMM-based forced alignment systems can also benefit from using precise phonetic segmentation for training HMMs. Context-dependent phone models are not better than context-independent models when combined with phone boundary models. The proposed system achieves 93.92% agreement (of phone boundaries) within 20 ms compared to manual segmentation on the TIMIT corpus. This is the best reported result on TIMIT to our knowledge.
منابع مشابه
Automatic Phonetic Segmentation for a Speech Corpus of Hebrew
This paper presents our study on different phonetic segmentation methods based on hidden Markov models evaluated against a Hebrew speech corpus. We investigated methods for fully automatic phonetic segmentation using only the corpus which should be segmented and automatically generated phonetic transcriptions. A new method for phonetic boundary correction based on spectral variation of the spee...
متن کاملA Minimum Boundary Error Framework for Automatic Phonetic Segmentation
This paper presents a novel framework for HMM-based automatic phonetic segmentation that improves the accuracy of placing phone boundaries. In the framework, both training and segmentation approaches are proposed according to the minimum boundary error (MBE) criterion, which tries to minimize the expected boundary errors over a set of possible phonetic alignments. This framework is inspired by ...
متن کاملHighly accurate phonetic segmentation using boundary correction models and system fusion
Accurate phone-level segmentation of speech remains an important task for many subfields of speech research. We investigate techniques for boosting the accuracy of automatic phonetic segmentation based on HMM acoustic-phonetic models. In prior work [25] we were able to improve on state-of-the-art alignment accuracy by employing special phone boundary HMM models, trained on phonetically segmente...
متن کاملMinimum boundary error training for automatic phonetic segmentation
Annotated speech corpora are indispensable to various areas of speech research. In this paper, we present a novel discriminative training approach for HMM-based automatic phonetic segmentation. The objective of the proposed minimum boundary error (MBE) discriminative training approach is to minimize the expected boundary errors over a set of phonetic alignments represented as a phonetic lattice...
متن کاملAutomatic speech segmentation with multiple statistical models
In this paper, we propose a novel approach to improve the performance of automatic speech segmentation techniques for concatenative text-to-speech synthesis. A number of automatic segmentation machines (ASMs) are simultaneously applied and the final boundary time marks are drawn from the multiple segmentation results. To identify the best time mark among those provided by the multiple ASMs, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013